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A quantitative structure-property relationship (QSPR) study was conducted to predict the adsorp-

tion coefficients of some pesticides. The successive projection algorithm feature selection (SPA)

strategy was used as descriptor selection and model development method. Modeling of the

relationship between selected molecular descriptors and adsorption coefficient data was achieved

by linear (multiple linear regression; MLR) and nonlinear (artificial neural network; ANN) methods.

The QSPR models were validated by cross-validation as well as application of the models to predict

the KOC of external set compounds, which did not contribute to model development steps. Both

linear and nonlinear methods provided accurate predictions, although more accurate results were

obtained by the ANN model. The root-mean-square errors of test set obtained by MLR and ANN

models were 0.3705 and 0.2888, respectively.
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INTRODUCTION

The widespread use and distribution of pesticides, chemicals
released deliberately and in large quantities into the environment,
are of great relevance today. The potential for adverse conse-
quences of pesticides, such as environmental impact on the
quality of water and wildlife habitats, has led to the development
of detailed analyses of potential environmental hazards asso-
ciated with the use of these compounds (1-3). Knowledge of
pesticide environmental behavior, such as adsorption to soil,
leaching to groundwater, and volatility in the atmosphere, is of
primary concern for an accurate assessment of the risk to the
environment and humans. Pesticide distribution and fate in
various environmental media and compartments are strongly
influenced by the inherent properties of the compounds them-
selves, particularly by basic physicochemical properties such as
solubility in water, vapor pressure (VP), and partitioning coeffi-
cients between organic matter (in soil or sediment) and water. In
the assessment of pesticide environmental behavior it is important
to understand the properties that control pesticide partitioning
tendencies. Recently, some molecular modeling methods based
on widespread quantitative structure-property/activity relation-
ships (QSPR/QSAR) techniques have found their place as im-
portant tools for chemists (4, 5).

The reliable estimation of soil sorption coefficients (KOC) for
organic pesticides plays a fundamental role in agriculture, espe-
cially for describing the pollution impact of the pesticides and
their tendency for biodegradation. This partition coefficient
represents a measure of the retaining of a chemical by the organic
matter of soils and sediments through a wide variety of possible
intermolecular interactions (6, 7). Nowadays, fewer than 300
chemicals have measured KOC values, and little information is
available on the sorption behavior of their metabolites (8).
Clearly, the prediction of the KOC parameter for a wide number
of chemical structures is very convenient for application in risk
assessment.

A generally accepted remedy to surmount the lack of avail-
ability of experimental data in contemporary chemistry is the
application of quantitative structure-property relationships
(QSPR) analysis (9), in the present case to obtain adequate
predictions for soil sorption coefficients. The ultimate role of
the different formulations of the QSPR theory is to suggest
mathematical models for estimating relevant end points of inter-
est, especially when these cannot be experimentally determined
for some reason. These studies simply rely on the assumption that
the structure of a compound determines the physicochemical
properties it manifests. The molecular structure is therefore
translated into the so-called molecular descriptors throughmath-
ematical formulas obtained from several theories, such as chemi-
cal graph theory, information theory, and quantum
mechanics (10, 11). There exist more than a thousand theoretical
descriptors available in the literature, and one usually faces the
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problem of selecting those that are themost representative for the
property under consideration. In this investigation, we introduce
the successive projections algorithm (SPA) (12) as a feature
selection, due to its ability in solving the descriptor selection
problems in QSPR model development.

SPA is a technique specifically designed to select subsets
of variables with small collinearity and to improve the condition-
ing of multiple linear regression (MLR) models. This algo-
rithmwas originally proposed forwavelength selection in spectro-
scopic data sets, especially under conditions of strong spectral
overlapping (12). MLR models obtained by using SPA have
been shown to be superior, in terms of prediction ability, to
full-spectrum partial least squares (PLS) models in a variety
of applications, including UV-vis (12-15), ICP-OES (16),
FT-IR (17), and NIR spectrometry (17-19). SPA has also been
successfully employed in various classification studies (20, 21).

SPA comprises three phases (22). Initially, the algorithm builds
candidate subsets of variables on the basis of a collinearity
minimization criterion. Such subsets are constructed according
to a sequence of vector projection operations applied to the
columns of the matrix of available predictor data. In the second
phase, the best candidate subset is chosen according to a criterion
that evaluates the prediction ability of the resulting MLRmodel,
such as the root-mean-square error obtained in a validation
set (23). In the third phase, the selected subset is subjected to an
elimination procedure to determine whether any variables can be
removed without significant loss of prediction ability. Each of
these phases is explained in detail elsewhere (24).

Although SPA was initially designed for use with MLR
models, it may be worth investigating whether it could be
employed with different modeling techniques. In the present
paper, the variables selected by SPA will be used to build MLR
and artificial neural network (ANN) models.

MATERIALS AND METHODS

Data. Experimental soil sorption coefficient (KOC) data of the 124
pesticides were used in this work (25). AQSPRmodel for the estimation of
the soil sorption coefficient of pesticides is established in the following six
steps: the molecular structure input and generation of the files containing
the chemical structures is stored in a computer-readable format; quantum
mechanics geometry is optimized with a semiempirical (AM1) method;
structural descriptors are computed; structural descriptors are selected;
and the structure-KOCmodel is generated byMLR,ANN, and statistical
analysis. The names of these compounds and their experimental and
calculated values by ANN and MLR methods are shown in Table 1. As
can be seen, this set contains 124 soil sorption coefficients (KOC) data of
pesticides. The data set was split into training, validation, and test sets. The
training set of 62 compounds, with log KOC values ranging from 0.301 to
6.000, was used to construct the model. The validation set of 31
compounds, with log KOC values ranging from 0.531 to 5.00, was used
to prevent overtraining/overfitting of the ANN model. The test set of 31
compounds, with KOC values ranging from 0.301 to 4.204, was used as an
external set to evaluate the predictive ability of the model.

Descriptor Generation and Screening. For calculatingKOC,wehave
used the well-known EPI KOC estimation tool (26). The soil sorption
coefficients (KOC) of solutes are related to some of their structural,
electronic, and geometric properties. The value of these properties can
be encoded quantitatively by numerical values named molecular descrip-
tors. These molecular parameters are to be used to search for the best
QSPR model of the soil sorption coefficients. The 2D structures of the
molecules were drawn using Hyperchem 7 software (27). The final
geometries were obtained with the semiempirical AM1 method in
the Hyperchem program. The molecular structures were optimized using
the Polak-Ribiere algorithm until the root-mean-square gradient was
0.001 kcal mol-1. The resulting geometry was transferred into the Dragon
program package, which was developed by a Milano chemometrics
and QSPR group (28), to calculate 1457 descriptors in constitutional,

topological, geometrical, charge, GETAWAY (Geometry, Topology
and Atoms-Weighted Assembly), WHIM (Weighted Holistic Invariant
Molecular descriptors), 3D-MoRSE (3D-Molecular Representation of
Structure based on Electron diffraction), molecular walk count, BCUT,
2D autocorrelation, aromaticity index, randic molecular profile, radial
distribution function, functional group, and atom-centered fragment
classes.

It is worth mentioning that in the first preselected analysis we removed
647 descriptors because many of them included zero or other constant/
near-constant values and did not have enough information of structure.
On the other hand, to decrease the redundancy existing in the descriptor
data matrix, the correlation coefficient r of the descriptors with each other
was examined and the collinear descriptors (with r > 0.9) were removed.

Upon application of SPA, seven descriptors were selected for model
building. These descriptors were as follows: H total index/weighted by
atomic polarizabilities (HTp); Moran autocorrelation lag-6/weighted by
atomic Sanderson electronegativities (MATS6e); third-component sym-
metry directional WHIM index/weighted by atomic van der Waals
volumes (G3v); 3D-MoRSE-signal05/weighted by atomic masses
(Mor05m); first-component symmetry directional WHIM index/weighted
by atomic masses (G1m); Moran autocorrelation lag-4/weighted by
atomic polarizabilities (MATS4p); and highest eigenvalue n.2 Burden
matrix/weighted by atomic masses (BEHm2).

The first selected descriptor is H total index/weighted by atomic
polarizabilities (HTp), which is a GETAWAY descriptor. GETAWAY
tries to match the 3D molecular geometry provided by the molecular
influence matrix and atom relatedness by topology with chemical infor-
mation by using different atomic weighting schemes (unit weights, mass,
polarizability, electronegativity).

The molecular influence matrix H is defined by

H ¼ MðMTMÞMT ð1Þ
whereM is the molecular matrix. The resultant A � Amatrix is invariant
to rotation of the molecular coordinates. The diagonal elements hυ are
termed leverages and represent the influence of each atom in determining
the shape of the molecule. Each off-diagonal element hυ represents the
degree of accessibility of the jth atom to interactions with the ith atom (29).

The second and third descriptors thatwere selected for theQSPRmodel
wereMoran autocorrelation lag-6/weighted by atomic Sanderson electro-
negativities (MATS6e) and Moran autocorrelation lag-4/weighted by
atomic polarizabilities (MATS4p). These descriptors are 2D autocorrela-
tion descriptors. The structural variables introducedbyMoran correspond
to bidimensional autocorrelations between pairs of atoms in the mole-
cule and are also defined to quantify the contribution of a considered
atomic property to the analyzed property. These can be readily calcu-
lated, that is, by summing products of terms including the atomic
weights for the terminal atoms in all of the paths of a prescribed length.
For the case ofMATS6e, the path connecting a pair of atoms has a length
of 6 and involves the atomic Sanderson electronegativities as weighting
scheme.

The next selected descriptors were third-component symmetry direc-
tionalWHIM index/weightedbyatomic van derWaals volumes (G3v) and
first-component symmetry directional WHIM index/weighted by atomic
masses (G1m), which are a kind ofWHIM descriptor. WHIM descriptors
are molecular descriptors based on statistical indices calculated on the
projection of the atoms along principal axes. Also,WHIMdescriptors are
built in such a way as to capture relevant molecular 3D information
regarding molecular size, shape, symmetry, and atom distribution with
respect to invariant reference frames.The algorithm consists of performing
a principal component analysis on the centered Cartesian coordinates of
molecules by using a weighted covariance matrix obtained from different
weighting schemes for atoms

Sjk¼
PA
i¼1

wiðqij -qjhÞðqjk -qkhÞ
PA
i¼1

wi

ð2Þ

where Sjk is the weighted covariance between the jth and kth atomic
coordinates, A is the number of atoms, wi the weight of the i

th atom, qij
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and qjk represent the jth and kth coordinates (j, k= x, y, z) of the ith atom,
respectively, and q is the corresponding average value. The last descriptor
that appeared in themodel is highest eigenvalue n.2 Burdenmatrix/weighted

by atomicmasses (BEHm2). BCUTdescriptors are defined as eigenvalues of
a modified connectivity matrix, which could be called Burden matrix B.
The Bmatrix is defined as follows: The diagonal elements Bii are the atomic

Table 1. Data Set with Experimental and Calculated Soil Sorption Coefficients (Log KOC)
a

no. compound log KOC (exptl) ANN MLR EPI no. compound log KOC (exptl) ANN MLR EPI

1 acephate 0.301 0.819 0.324 1.338 63 aldicarb 0.903 1.376 1.668 3.371

2 aldrin 3.699 3.397 3.784 3.494 64 anilazine 2.344 2.464 2.177 2.558

3 atrazine 2.093 1.827 2.018 2.267 65 benazolin 1.344 1.683 1.278 1.137

4 bendiocarb 2.756 2.610 2.104 1.512 66 bifenox 3.383 3.150 2.889 2.922

5 bromacil 1.505 1.485 1.349 5.025 67 butylate 3.602 3.116 3.415 1.493

6 captan 2.104 2.656 2.841 2.648 68 carbetamide 1.946 1.959 1.767 1.274

7 carbofuran 1.342 2.113 2.100 1.386 69 chloroneb 3.217 3.237 3.283 2.788

8 chlorothalonil 3.932 3.771 3.401 3.161 70 chlorpyrifos 3.697 3.112 3.09 2.647

9 chlorsulfuron 1.602 1.879 2.390 2.362 71 cypermethrin 5.000 4.549 4.612 2.638

10 diazinon 2.434 2.724 2.873 2.375 72 1,3-dichloropropene 1.505 1.861 2.106 2.149

11 dichlorprop 3.000 2.454 2.457 1.843 73 dinoseb 1.591 1.428 1.564 3.387

12 dimethoate 1.301 1.754 2.286 1.000 74 disulfoton 2.778 2.638 2.690 2.399

13 diuron 2.657 2.768 3.243 1.207 75 EPTC 2.082 2.233 2.370 3.528

14 esfenvalerate 3.724 3.830 4.078 2.716 76 ethofumesate 2.170 2.486 2.311 2.544

15 ethoprophos 2.004 1.715 2.276 1.574 77 fenoxaprop-P 3.652 3.716 2.813 1.484

16 fenoxycarb 3.000 3.042 2.792 3.578 78 fluometuron 2.000 2.148 2.081 1.686

17 fluoroxypyr 1.531 1.611 1.755 2.017 79 glyphosate 2.223 2.220 2.455 3.187

18 hexazinone 1.732 1.606 1.829 3.991 80 iprodione 2.679 3.034 2.73 1.000

19 isofenphos 2.778 3.038 3.165 2.638 81 linuron 2.597 2.323 2.129 2.260

20 malathion 3.255 3.059 3.493 2.789 82 methidathion 2.212 2.289 2.55 1.079

21 methiocarb 2.751 2.710 2.358 2.935 83 metolachlor 2.243 2.818 3.046 4.628

22 metsulfuron 1.544 1.493 1.896 2.384 84 parathion 3.698 3.423 3.31 2.465

23 parathion-methyl 2.373 2.333 2.211 2.061 85 phorate 3.000 2.905 2.365 1.110

24 phosalone 4.255 3.923 4.122 2.209 86 pirimiphos-methyl 3.000 3.032 2.923 2.456

25 prochloraz 3.864 3.645 4.047 1.850 87 propachlor 1.832 2.244 2.135 4.060

26 propanil 2.173 2.214 2.870 1.903 88 propiconazole 2.957 3.170 3.474 3.250

27 propoxur 1.477 1.931 2.057 2.739 89 sulfometuron 1.892 1.711 2.177 2.718

28 terbacil 1.74 1.995 1.660 2.359 90 terbutryn 2.817 2.836 2.957 2.676

29 thifensulfuron 1.653 1.636 2.093 3.378 91 thiram 0.531 0.846 0.984 5.250

30 tralomethrin 5.000 5.050 4.982 2.133 92 trichlorfon 1.462 2.010 1.453 2.647

31 tridemorph 3.308 2.951 3.230 2.318 93 vinclozolin 2.426 2.574 2.641 1.767

32 alachlor 2.079 2.581 2.646 2.707 94 acifluorfen 2.053 2.292 2.536 1.257

33 amitrole 2.105 2.116 1.965 2.378 95 ametryn 2.477 2.227 1.85 1.519

34 azinphos-methyl 3.166 2.735 3.069 3.124 96 azinphos-ethyl 3.166 2.979 3.389 2.143

35 bentazone 1.531 1.375 1.389 2.262 97 benomyl 3.278 3.240 2.740 3.428

36 bromoxynil 2.230 2.336 2.000 5.033 98 bromofenoxim 0.334 0.436 0.732 2.196

37 carbendazim 2.110 1.911 1.740 3.127 99 carbaryl 2.093 2.083 1.908 2.837

38 chloridazon 2.037 1.869 1.824 1.459 100 carboxin 2.415 2.255 2.253 2.455

39 chlorpropham 2.602 2.608 2.373 2.428 101 chlorotoluron 2.243 2.542 2.274 2.294

40 cycloate 2.633 2.232 2.116 1.907 102 cyanazine 2.029 2.177 2.041 2.551

41 dichlobenil 2.326 2.481 1.931 1.686 103 dicamba 0.301 0.416 0.321 2.107

42 diflubenzuron 4.000 3.719 3.593 2.878 104 diclofop 4.204 3.708 3.918 3.745

43 diquat 6.000 5.757 5.586 3.025 105 diphenamid 2.079 2.111 2.44 1.645

44 endosulfan 4.093 4.138 4.008 3.549 106 DNOC 1.806 1.706 1.421 3.201

45 ethion 4.000 4.018 3.626 1.389 107 ethalfluralin 3.602 3.179 3.275 2.173

46 fenamiphos 2.426 2.587 2.445 4.187 108 etridiazole 3.000 3.132 3.021 1.984

47 fenthion 3.176 3.079 2.346 2.918 109 fenpropimorph 3.403 3.477 3.477 1.891

48 glufosinate 2.000 2.049 1.899 2.913 110 fonofos 2.939 2.402 2.716 2.991

49 ioxynil 2.301 1.987 1.846 2.133 111 imazapyr 2.000 1.977 1.714 2.517

50 lindane 3.041 2.912 3.031 2.779 112 isoproturon 2.029 2.086 2.07 2.803

51 methabenzthiazuron 2.722 2.252 2.064 2.895 113 mecoprop 2.103 2.281 2.06 1.000

52 methoxychlor 4.903 4.766 4.26 2.412 114 methomyl 1.857 2.084 1.862 3.428

53 napropamide 2.845 3.023 2.866 5.644 115 molinate 2.278 1.993 1.764 3.672

54 permethrin 5.000 4.442 4.238 3.909 116 pebulate 3.155 2.342 2.824 1.000

55 pirimicarb 2.869 2.537 2.819 4.117 117 picloram 1.204 1.607 1.265 1.419

56 prometryn 2.411 2.199 2.266 2.462 118 prometon 3.176 2.791 3.012 3.447

57 propham 1.272 1.214 1.535 1.564 119 propazine 2.187 2.453 2.609 3.215

58 simazine 2.061 2.408 2.190 2.212 120 propyzamide 2.403 2.513 2.745 1.731

59 terbuthylazine 2.485 2.683 2.920 2.352 121 terbufos 2.698 2.666 3.117 4.155

60 thiodicarb 2.544 2.941 2.892 3.439 122 thiobencarb 2.954 2.504 2.464 3.986

61 triallate 3.268 3.293 3.933 3.917 123 triadimenol 2.357 2.527 2.969 2.677

62 vernolate 2.415 2.277 2.330 4.429 124 trifluralin 3.807 3.546 2.821 2.461

a Training set, molecules 1-62; validation set, molecules 63-93; test set, molecules 94-124.
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number Zi of the atoms; the off-diagonal elements Bij representing two
bonded atoms i and j are equal to π*� 10-1, where π* is conventional bond
order, that is, 0.1, 0.2, 0.3, and 0.15 for single, double, triple, and aroma-
tic bonds, respectively; off-diagonal elements Bij corresponding to ter-
minal bonds are augmented by 0.01; all other matrix elements are set to
0.001 (29).

RESULTS AND DISCUSSION

The prediction ability of QSAR/QSPR models is affected by
two factors. One is the descriptors, which should carry enough
information of molecular structure for the interpretation of the
activity/property. The other is the modeling method em-
ployed (30). The number of descriptors available for QSAR/
QSPR studies is often so large that it is difficult to obtain a model
including all of them. Therefore, identifying important descrip-
tors certainly plays an important role in QSAR/QSPR. Descrip-
tors should represent the maximum information in activity
variations, and collinearity among them must be kept to a
minimum.

The seven descriptors that have been selected using SPA are
shown in Table 2. As can be seen from the correlation matrix
(Table 3), there is no significant correlation between the selected
descriptors. These descriptors were used for both linear and
nonlinear models.

To build and test the models, the data set comprising 124
compounds was separated into a training set of 62 compounds, a
validation set of 31 compounds, and a test set of 31 compounds.
By using the training set, with the seven selected descriptors, the
following linear model was obtained:

Log KOC¼ 1:72965 þ 0:333407HTp þ 0:936504MATS6e

þ 0:78916G3v þ 0:122569Mor05m þ 4:201647G1m

þ 1:210337MATS4p-0:711055BEHm2

This model was then used to predict the validation and test data.
The prediction results are given in Table 1.

To construct an ANN model, a three-layer network with a
sigmoid transfer function was employed. Before the networks
were trained, the input valueswere normalized between-1 and 1.
The initial weights were selected randomly between-0.3 and 0.3.
The number of nodes in the hidden layer, as well as the learning
rates and momentum values, were optimized. For this purpose,

the network was trained with different numbers of nodes in the
hidden layer, and the root-mean-square error (RMSE) between
network outputs and target values was employed as performance
metric. Table 4 shows the architecture and training settings of the
optimized network.

It should be noted that the training of the network for the
prediction of log KOC was interrupted when the RMSE of the
validation set started to increase, to avoid overfitting. To select
the best weight update function, two statistical methods were
considered for evaluating the resulting models, namely, leave-
one-out cross-validation (Q2 LOO) and prediction standard error
of estimation (SEP).

The compounds in the test set were not used during the training
process and were reserved to evaluate the predictive power of the
generated ANN. The ANN-calculated values of log KOC for
training, validation, and test sets are shown in Table 1. Figure 1
shows the experimental values versus the predicted values by
SPA-ANN. The residuals of the ANN calculated values of log
KOC are plotted against the experimental values in Figure 2. The
presence of residuals at both sides of the zero line indicates that no
systematic error exists in the development of theANNmodel. For
comparison, we also calculated KOC by using the EPI package as
shown in Table 1.

For evaluation of the predictive ability of the models, we
employed the determination coefficient (R2), root-mean-square
error of prediction (RMSEP), relative standard error of prediction

Table 2. Descriptors Used in Model Construction

no. symbol class meaning

1 HTp GETAWAY H total index/weigthed by atomic polarizabilities

2 MATS6e 2D autocorrelation Moran autocorrelation lag-6/ weighted by atomic Sanderson electronegativities

3 G3v WHIM third-component symmetry directional WHIM index/weighted by atomic van der Waals volumes

4 Mor05m 3D-MoRSE 3D-MoRSE-signal05/weighted by atomic masses

5 G1m WHIM first-component symmetry directional WHIM index/weighted by atomic masses

6 MATS4p 2D autocorrelation Moran autocorrelation lag-4/weighted by atomic polarizabilities

7 BEHm2 BCUT highest eigenvalue n.2 Burden matrix/weighted by atomic masses

Table 3. Correlation Matrix for the Seven Selected Descriptors

HTp MATS6e G3v Mor05m G1m MATS4p BEHm2

HTp 1

MATS6e 0.0337 1

G3v 0.209 0.001 1

Mor05m 0.0056 0.0134 0.0072 1

G1m 0.0575 0.0021 0.1073 0.0005 1

MATS4p 0.0202 0.0001 0.0001 0.0331 0.0386 1

BEHm2 0.1867 0.3702 0.0035 0.02 0.0004 0.0297 1

Table 4. Architecture and Training Settings for the ANN Models

no. of nodes in the input layer 7 þ 1a

no. of nodes in the hidden layer 6

no. of nodes in the output layer 1

learning rate 0.376

momentum 0.628

no. of iterations 10

transfer function sigmoid

a Bias.

Figure 1. Plot of calculated soil sorption coefficients (log KOC) against
experimental values.



Article J. Agric. Food Chem., Vol. 57, No. 15, 2009 7157

(RSEP), and mean absolute error (MAE) values (31), which are
defined as

R2¼ 1-

Pn
i¼1

ðypred -yobsÞ2

Pn
i¼1

ðyobs -ymeasÞ2

RMSEP¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðypred -yobsÞ2

n

vuuut

RSEP ð%Þ¼ 100�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðypred -yobsÞ2

Pn
i¼1

ðyobsÞ2

vuuuuut

MAE ð%Þ¼ 100

n
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðypred -yobsÞ
�� ��s

where ypred is the predicted value of the property under
consideration, yobs is the experimental value, and n is the
number of samples in the set. These statistical parameters
for SPA-MLR, SPA-ANN, and EPI are shown in Table 5.
As can be seen, SPA-ANN provided the most accurate
predictions of log KOC for the pesticides employed in the
study.
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